Experimental investigation of microgap cooling technology for minimizing temperature gradient and mitigating hotspots in electronic devices | IEEE Conference Publication | IEEE Xplore

Experimental investigation of microgap cooling technology for minimizing temperature gradient and mitigating hotspots in electronic devices


Abstract:

Hotspots can be generated by non-uniform heat flux condition over the heated surface due to higher packaging densities and greater power consumption of high-performance c...Show More

Abstract:

Hotspots can be generated by non-uniform heat flux condition over the heated surface due to higher packaging densities and greater power consumption of high-performance computing technology in military systems designs. Because of this hotspot within a given chip, local heat generation rate exceed the average value on the chip and increase the peak temperature for a given total power generation which degrades the reliability and performance of equipments. Two phase microgap cooling technology is promising to minimization of temperature gradient and reduction of maximum temperature over the heated surface of the device because of unique boiling mechanism in microgap: confined flow and thin film evaporation. The present study aims to experimentally investigate the applicability of microgap cooling technology for minimizining temperature gradient and mitigating hotspots from the heated surface of electronic device. Experiments are performed in silicon based microgap heat sink having a range of gap dimension from 200 µm – 400 µm. Encouraging results have been obtained using microgap channel cooler for hotspots mitigation as it maintain uniform and low wall temperature over the heated surface.
Date of Conference: 07-09 December 2011
Date Added to IEEE Xplore: 19 April 2012
ISBN Information:
Conference Location: Singapore

Contact IEEE to Subscribe

References

References is not available for this document.