CNoC: High-Radix Clos Network-on-Chip | IEEE Journals & Magazine | IEEE Xplore
Scheduled Maintenance: On Tuesday, 25 February, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

CNoC: High-Radix Clos Network-on-Chip


Abstract:

Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We ...Show More

Abstract:

Many high-radix network-on-chip (NoC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe high-radix Clos network-on-chip (CNoC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose: 1) a high-radix router architecture with virtual output queue (VOQ) buffer structure and packet mode dual round-robin matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNoC; 2) the design of hierarchical round-robin arbiter for high-radix high-speed NoC routers; and 3) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node three-stage CNoC under uniform traffic increases from 62% to 78% by replacing the baseline virtual channel routers with PDRRM VOQ routers. We also compared the delay, power, and area performance of the 64-node CNoC with other NoC topologies under various synthetic traffic patterns and SPLASH-2 benchmark traces. The simulation results show that in general CNoC improves the throughput, low-load delay, and energy efficiency over the compared NoC topologies.
Page(s): 1897 - 1910
Date of Publication: 17 November 2011

ISSN Information:


References

References is not available for this document.