Sparse Unmixing of Hyperspectral Data | IEEE Journals & Magazine | IEEE Xplore

Sparse Unmixing of Hyperspectral Data


Abstract:

Linear spectral unmixing is a popular tool in remotely sensed hyperspectral data interpretation. It aims at estimating the fractional abundances of pure spectral signatur...Show More

Abstract:

Linear spectral unmixing is a popular tool in remotely sensed hyperspectral data interpretation. It aims at estimating the fractional abundances of pure spectral signatures (also called as endmembers) in each mixed pixel collected by an imaging spectrometer. In many situations, the identification of the end-member signatures in the original data set may be challenging due to insufficient spatial resolution, mixtures happening at different scales, and unavailability of completely pure spectral signatures in the scene. However, the unmixing problem can also be approached in semisupervised fashion, i.e., by assuming that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance (e.g., spectra collected on the ground by a field spectroradiometer). Unmixing then amounts to finding the optimal subset of signatures in a (potentially very large) spectral library that can best model each mixed pixel in the scene. In practice, this is a combinatorial problem which calls for efficient linear sparse regression (SR) techniques based on sparsity-inducing regularizers, since the number of endmembers participating in a mixed pixel is usually very small compared with the (ever-growing) dimensionality (and availability) of spectral libraries. Linear SR is an area of very active research, with strong links to compressed sensing, basis pursuit (BP), BP denoising, and matching pursuit. In this paper, we study the linear spectral unmixing problem under the light of recent theoretical results published in those referred to areas. Furthermore, we provide a comparison of several available and new linear SR algorithms, with the ultimate goal of analyzing their potential in solving the spectral unmixing problem by resorting to available spectral libraries. Our experimental results, conducted using both simulated and real hyperspectral data sets collected by the NASA Jet Propulsion Laboratory's Airborne Visible In...
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 49, Issue: 6, June 2011)
Page(s): 2014 - 2039
Date of Publication: 20 January 2011

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.