Channels That Heat Up | IEEE Journals & Magazine | IEEE Xplore

Abstract:

This paper considers an additive noise channel where the time-A; noise variance is a weighted sum of the squared magnitudes of the previous channel inputs plus a constant...Show More

Abstract:

This paper considers an additive noise channel where the time-A; noise variance is a weighted sum of the squared magnitudes of the previous channel inputs plus a constant. This channel model accounts for the dependence of the intrinsic thermal noise on the data due to the heat dissipation associated with the transmission of data in electronic circuits: the data determine the transmitted signal, which in turn heats up the circuit and thus influences the power of the thermal noise. The capacity of this channel (both with and without feedback) is studied at low transmit powers and at high transmit powers. At low transmit powers, the slope of the capacity-versus-power curve at zero is computed and it is shown that the heating-up effect is beneficial. At high transmit powers, conditions are determined under which the capacity is bounded, i.e., under which the capacity does not grow to infinity as the allowed average power tends to infinity.
Published in: IEEE Transactions on Information Theory ( Volume: 55, Issue: 8, August 2009)
Page(s): 3594 - 3612
Date of Publication: 14 July 2009

ISSN Information:


References

References is not available for this document.