Abstract:
This paper implements several methods for performing vision-based formation flight control of multiple aircraft in the presence of obstacles. No information is communicat...Show MoreMetadata
Abstract:
This paper implements several methods for performing vision-based formation flight control of multiple aircraft in the presence of obstacles. No information is communicated between aircraft, and only passive 2-D vision information is available to maintain formation. The methods for formation control rely either on estimating the range from 2-D vision information by using extended Kalman Filters or directly regulating the size of the image subtended by a leader aircraft on the image plane. When the image size is not a reliable measurement, especially at large ranges, we consider the use of bearing-only information. In this case, observability with respect to the relative distance between vehicles is accomplished by the design of a time-dependent formation geometry. To improve the robustness of the estimation process with respect to unknown leader aircraft acceleration, we augment the EKF with an adaptive neural network. 2-D and 3-D simulation results are presented that illustrate the various approaches.
Date of Conference: 14-17 December 2004
Date Added to IEEE Xplore: 16 May 2005
Print ISBN:0-7803-8682-5
Print ISSN: 0191-2216