Abstract:
Existing methods have achieved remarkable performance in image dehazing, particularly on synthetic datasets. However, they often struggle with real-world hazy images due ...Show MoreMetadata
Abstract:
Existing methods have achieved remarkable performance in image dehazing, particularly on synthetic datasets. However, they often struggle with real-world hazy images due to domain shift, limiting their practical applicability. This paper introduces HazeCLIP, a language-guided adaptation framework designed to enhance the real-world performance of pre-trained dehazing networks. Inspired by the Contrastive Language-Image Pre-training (CLIP) model’s ability to distinguish between hazy and clean images, we leverage it to evaluate dehazing results. Combined with a region-specific dehazing technique and tailored prompt sets, the CLIP model accurately identifies hazy areas, providing a high-quality, human-like prior that guides the fine-tuning process of pre-trained networks. Extensive experiments demonstrate that HazeCLIP achieves state-of-the-art performance in real-word image dehazing, evaluated through both visual quality and image quality assessment metrics. Codes are available at https://github.com/Troivyn/HazeCLIP.
Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information: