Abstract:
Self-supervised pretrained models exhibit competitive performance in automatic speech recognition (ASR) on finetuning, even with limited in-domain supervised data. Howeve...Show MoreMetadata
Abstract:
Self-supervised pretrained models exhibit competitive performance in automatic speech recognition (ASR) on finetuning, even with limited in-domain supervised data. However, popular pretrained models are not suitable for streaming ASR because they are trained with full attention context. In this paper, we introduce XLSR-Transducer, where the XLSR-53 model is used as encoder in transducer setup. Our experiments on the AMI dataset reveal that the XLSR-Transducer achieves 4% absolute WER improvement over Whisper large-v2 and 8% over a Zipformer transducer model trained from scratch. To enable streaming capabilities, we investigate different attention masking patterns in the self-attention computation of transformer layers within the XLSR-53 model. We validate XLSR-Transducer on AMI and 5 languages from CommonVoice under low-resource scenarios. Finally, with the introduction of attention sinks, we reduce the left context by half while achieving a relative 12% improvement in WER.
Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information:
ISSN Information:
References is not available for this document.
References is not available for this document.