SemiSAM: Enhancing Semi-Supervised Medical Image Segmentation via SAM-Assisted Consistency Regularization | IEEE Conference Publication | IEEE Xplore

SemiSAM: Enhancing Semi-Supervised Medical Image Segmentation via SAM-Assisted Consistency Regularization


Abstract:

Semi-supervised learning has attracted much attention due to its less dependence on acquiring abundant annotations from experts compared to fully supervised methods, whic...Show More

Abstract:

Semi-supervised learning has attracted much attention due to its less dependence on acquiring abundant annotations from experts compared to fully supervised methods, which is especially important for medical image segmentation which typically requires intensive pixel/voxel-wise labeling by domain experts. Although semi-supervised methods can improve the performance by utilizing unlabeled data, there are still gaps between fully supervised methods under extremely limited annotation scenarios. In this paper, we propose a simple yet efficient strategy to explore the usage of the Segment Anything Model (SAM) for enhancing semi-supervised medical image segmentation. Concretely, the segmentation model trained with domain knowledge provides information for localization and generating input prompts to the SAM. Then the generated pseudo-labels of SAM are utilized as additional supervision to assist in the learning procedure of the semi-supervised framework. Extensive experiments demonstrate that SemiSAM significantly improves the performance of existing semi-supervised frameworks when only one or a few labeled images are available and shows strong efficiency as a plug-and-play strategy for semi-supervised medical image segmentation.
Date of Conference: 03-06 December 2024
Date Added to IEEE Xplore: 10 January 2025
ISBN Information:

ISSN Information:

Conference Location: Lisbon, Portugal

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.