Abstract:
Quantum annealers offer a promising approach to solve Quadratic Unconstrained Binary Optimization (QUBO) problems, which have a wide range of applications. However, when ...Show MoreMetadata
Abstract:
Quantum annealers offer a promising approach to solve Quadratic Unconstrained Binary Optimization (QUBO) problems, which have a wide range of applications. However, when a user submits its QUBO problem to a third-party quantum annealer, the problem itself may disclose the user's private information to the quantum annealing service provider. To mitigate this risk, we introduce a privacy-preserving QUBO framework and propose a novel solution method. Our approach employs a combination of digit-wise splitting and matrix permutation to obfuscate the QUBO problem's model matrix Q, effectively concealing the matrix elements. In addition, based on the solution to the obfuscated version of the QUBO problem, we can reconstruct the solution to the original problem with high accuracy. Theoretical analysis and empirical tests confirm the efficacy and efficiency of our proposed technique, demonstrating its potential for preserving user privacy in quantum annealing services.
Date of Conference: 15-20 September 2024
Date Added to IEEE Xplore: 10 January 2025
ISBN Information: