Loading [MathJax]/extensions/MathZoom.js
Tracking Tumors under Deformation from Partial Point Clouds using Occupancy Networks | IEEE Conference Publication | IEEE Xplore

Tracking Tumors under Deformation from Partial Point Clouds using Occupancy Networks


Abstract:

To track tumors during surgery, information from preoperative CT scans is used to determine their position. However, as the surgeon operates, the tumor may be deformed wh...Show More

Abstract:

To track tumors during surgery, information from preoperative CT scans is used to determine their position. However, as the surgeon operates, the tumor may be deformed which presents a major hurdle for accurately resecting the tumor, and can lead to surgical inaccuracy, increased operation time, and excessive margins. This issue is particularly pronounced in robot-assisted partial nephrectomy (RAPN), where the kidney undergoes significant deformations during operation. Toward addressing this, we introduce a occupancy network-based method for the localization of tumors within kidney phantoms undergoing deformations at interactive speeds. We validate our method by introducing a 3D hydrogel kidney phantom embedded with exophytic and endophytic renal tumors. It closely mimics real tissue mechanics to simulate kidney deformation during in vivo surgery, providing excellent contrast and clear delineation of tumor margins to enable automatic threshold-based segmentation. Our findings indicate that the proposed method can localize tumors in moderately deforming kidneys with a margin of 6mm to 10mm, while providing essential volumetric 3D information at over 60Hz. This capability directly enables downstream tasks such as robotic resection.
Date of Conference: 14-18 October 2024
Date Added to IEEE Xplore: 25 December 2024
ISBN Information:

ISSN Information:

Conference Location: Abu Dhabi, United Arab Emirates

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.