Likely, Light, and Accurate Context-Free Clusters-based Trajectory Prediction | IEEE Conference Publication | IEEE Xplore

Likely, Light, and Accurate Context-Free Clusters-based Trajectory Prediction


Abstract:

Autonomous systems in the road transportation network require intelligent mechanisms that cope with uncertainty to foresee the future. In this paper, we propose a multi-s...Show More

Abstract:

Autonomous systems in the road transportation network require intelligent mechanisms that cope with uncertainty to foresee the future. In this paper, we propose a multi-stage probabilistic approach for trajectory forecasting: trajectory transformation to displacement space, clustering of displacement time series, trajectory proposals, and ranking proposals. We introduce a new deep feature clustering method, underlying self-conditioned GAN, which copes better with distribution shifts than traditional methods. Additionally, we propose novel distance-based ranking proposals to assign probabilities to the generated trajectories that are more efficient yet accurate than an auxiliary neural network. The overall system surpasses context-free deep generative models in human and road agents trajectory data while performing similarly to point estimators when comparing the most probable trajectory.
Date of Conference: 24-28 September 2023
Date Added to IEEE Xplore: 13 February 2024
ISBN Information:

ISSN Information:

Conference Location: Bilbao, Spain

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.