Abstract:
Brain-computer interfaces (BCI) have the potential to improve the quality of life for persons with paralysis. Sub-scalp EEG provides an alternative BCI signal acquisition...Show MoreMetadata
Abstract:
Brain-computer interfaces (BCI) have the potential to improve the quality of life for persons with paralysis. Sub-scalp EEG provides an alternative BCI signal acquisition method that compromises between the limitations of traditional EEG systems and the risks associated with intracranial electrodes, and has shown promise in long-term seizure monitoring. However, sub-scalp EEG has not yet been assessed for suitability in BCI applications. This study presents a preliminary comparison of visual evoked potentials (VEPs) recorded using sub-scalp and endovascular stent electrodes in a sheep. Sub-scalp electrodes recorded comparable VEP amplitude, signal-to-noise ratio and bandwidth to the stent electrodes.Clinical relevance—This is the first study to report a comparision between sub-scalp and stent electrode array signals. The use of sub-scalp EEG electrodes may aid in the long-term use of brain-computer interfaces.
Published in: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Date of Conference: 24-27 July 2023
Date Added to IEEE Xplore: 11 December 2023
ISBN Information:
ISSN Information:
PubMed ID: 38083531