Robust Graph Neural Diffusion for Image Matching | IEEE Conference Publication | IEEE Xplore

Robust Graph Neural Diffusion for Image Matching


Abstract:

Image matching identifies matching street landmark patches between the images captured by a vehicular camera and those stored in a database. Applications include autonomo...Show More

Abstract:

Image matching identifies matching street landmark patches between the images captured by a vehicular camera and those stored in a database. Applications include autonomous driving perception and localization. However, in practical scenarios, challenging conditions such as changing weather, illumination, and dynamic objects result in perturbations of the captured images, leading to inaccurate matching. To achieve robust landmark patch matching, we present a method, named GRAND-Mat, which leverages a neural diffusion over graph embeddings to counteract perturbations. We first extract high-dimensional features of landmark patches using a ResNet. Then, we utilize graph neural diffusion models to aggregate the self and cross-graph information from these features. Furthermore, we apply feature similarity learning to acquire the final matching score. We evaluate the performance of our model on a street scene dataset, which demonstrates state-of-the-art matching performance under additive perturbations.
Date of Conference: 08-11 October 2023
Date Added to IEEE Xplore: 11 September 2023
ISBN Information:
Conference Location: Kuala Lumpur, Malaysia

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.