Abstract:
Scientists design models to understand phenomena, make predictions, and/or inform decision-making. This study targets models that encapsulate spatially evolving phenomena...Show MoreMetadata
Abstract:
Scientists design models to understand phenomena, make predictions, and/or inform decision-making. This study targets models that encapsulate spatially evolving phenomena. Given a model, our objective is to identify the accuracy of the model across all geospatial extents. A scientist may expect these validations to occur at varying spatial resolutions (e.g., states, counties, towns, and census tracts). Assessing a model with all available ground-truth data is infeasible due to the data volumes involved. We propose a framework to assess the performance of models at scale over diverse spatial data collections. Our methodology ensures orchestration of validation workloads while reducing memory strain, alleviating contention, enabling concurrency, and ensuring high throughput. We introduce the notion of a validation budget that represents an upper-bound on the total number of observations that are used to assess the performance of models across spatial extents. The validation budget attempts to capture the distribution characteristics of observations and is informed by multiple sampling strategies. Our design allows us to decouple the validation from the underlying model-fitting libraries to interoperate with models constructed using different libraries and analytical engines; our advanced research prototype currently supports Scikit-learn, PyTorch, and TensorFlow.
Date of Conference: 17-20 December 2022
Date Added to IEEE Xplore: 26 January 2023
ISBN Information: