Abstract:
The recent surge of interest in brain-inspired architectures along with the development of nonlinear dynamical electronic devices and circuits has enabled energy-efficien...View moreMetadata
Abstract:
The recent surge of interest in brain-inspired architectures along with the development of nonlinear dynamical electronic devices and circuits has enabled energy-efficient hardware realizations of several important neurobiological systems and features. Central pattern generator (CPG) is one such neural system underlying the control of various rhythmic motor behaviors in animals. A CPG can produce spontaneous coordinated rhythmic output signals without any feedback mechanism, ideally realizable by a system of coupled oscillators. Bio-inspired robotics aims to use this approach to control the limb movement for synchronized locomotion. Hence, devising a compact and energy-efficient hardware platform to implement neuromorphic CPGs would be of great benefit for bio-inspired robotics. In this work, we demonstrate that four capacitively coupled vanadium dioxide (VO2) memristor-based oscillators can produce spatiotemporal patterns corresponding to the primary quadruped gaits. The phase relationships underlying the gait patterns are governed by four tunable bias voltages (or four coupling strengths) making the network programmable, reducing the complex problem of gait selection and dynamic interleg coordination to the choice of four control parameters. To this end, we first introduce a dynamical model for the VO2 memristive nanodevice, then perform analytical and bifurcation analysis of a single oscillator, and finally demonstrate the dynamics of coupled oscillators through extensive numerical simulations. We also show that adopting the presented model for a VO2 memristor reveals a striking resemblance between VO2 memristor oscillators and conductance-based biological neuron models such as the Morris–Lecar (ML) model. This can inspire and guide further research on implementation of neuromorphic memristor circuits that emulate neurobiological phenomena.
Published in: IEEE Transactions on Neural Networks and Learning Systems ( Volume: 35, Issue: 6, June 2024)