Abstract:
As an unsupervised dimensionality reduction method, the principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for...Show MoreMetadata
Abstract:
As an unsupervised dimensionality reduction method, the principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. Therefore, it is inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA (SuperPCA) approach is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, the SuperPCA has four main properties: 1) unlike the traditional PCA method based on a whole image, the SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections; 2) most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while the SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation; 3) since the regions obtained by superpixel segmentation have homogeneity, the SuperPCA can extract potential low-dimensional features even under noise; and 4) although the SuperPCA is an unsupervised method, it can achieve a competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise-resistant, leading to an improved HSI classification performance. Experiments on three public data sets demonstrate that the SuperPCA model significantly outperforms the conventional PCA-based dimensionality reduction baselines for HSI classification, and some state-of-the-art feature extraction approaches. The MATLAB source code is available at https://github.com/junjun-jiang/SuperPCA.
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 56, Issue: 8, August 2018)