Predicting Frailty Condition in Elderly Using Multidimensional Socioclinical Databases | IEEE Journals & Magazine | IEEE Xplore

Scheduled Maintenance: On Tuesday, May 20, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (6:00-10:00 PM UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Predicting Frailty Condition in Elderly Using Multidimensional Socioclinical Databases


Abstract:

Smart cities face the challenge of combining sustainable national welfare with high living standards. In the last decades, life expectancy increased globally, leading to ...Show More

Abstract:

Smart cities face the challenge of combining sustainable national welfare with high living standards. In the last decades, life expectancy increased globally, leading to various age-related issues in almost all developed countries. Frailty affects elderly who are experiencing daily life limitations due to cognitive and functional impairments and represents a remarkable burden for national health systems. In this paper, we proposed two different predictive models for frailty by exploiting 12 socioclinical databases. Emergency hospitalization or all-cause mortality within a year were used as surrogates of frailty. The first model was able to assign a frailty risk score to each subject older than 65 years old, identifying five different classes for tailor made interventions. The second prediction model assigned a worsening risk score to each subject in the first nonfrail class, namely the probability to move in a higher frailty class within the year. We conducted a retrospective cohort study based on the whole elderly population of the Municipality of Bologna, Italy. We created a baseline cohort of 95 368 subjects for the frailty risk model and a baseline cohort of 58 789 subjects for the worsening risk model, respectively. To evaluate the predictive ability of our models through calibration and discrimination estimates, we used, respectively, a six-year and a four-year observation period. Good discriminatory power and calibration were obtained, demonstrating a good predictive ability of the models.
Published in: Proceedings of the IEEE ( Volume: 106, Issue: 4, April 2018)
Page(s): 723 - 737
Date of Publication: 05 February 2018

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.