Abstract:
We propose an innovative stochastic-based computing architecture to implement low-power and robust artificial neural network (S-ANN) with both magnetic tunneling junction...Show MoreMetadata
Abstract:
We propose an innovative stochastic-based computing architecture to implement low-power and robust artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and Domain Wall (DW) devices. Our mixed-model HSPICE simulation results have shown that, for a well-known pattern recognition task, a 34-neuron S-ANN implementation achieves more than 1.5 orders of magnitude lower energy consumption and 2.5 orders of magnitude less hidden layer chip area, when compared with its deterministicbased ANN counterparts which are implemented with digital and analog CMOS circuits. We believe that our S-ANN architecture achieves such a remarkable performance gain by leveraging two key ideas. First, because all neural signals are encoded as random bit streams, the standard weighted-sum synapses can be accomplished by stochastic bit writing and reading procedure. Second, we designed and implemented a novel multiple-phase pumping circuit structure to effectively realize the soft-limiting neural transfer function that is essential to improve the overall ANN capability and reduce its network complexity.
Published in: IEEE Transactions on Multi-Scale Computing Systems ( Volume: 4, Issue: 3, 01 July-Sept. 2018)