Loading [a11y]/accessibility-menu.js
A 0.013-mm2 0.53-mW/Gb/s 32-Gb/s Hybrid Analog Equalizer Under 21-dB Channel Loss in 65-nm CMOS | IEEE Journals & Magazine | IEEE Xplore

A 0.013-mm2 0.53-mW/Gb/s 32-Gb/s Hybrid Analog Equalizer Under 21-dB Channel Loss in 65-nm CMOS


Abstract:

Low-power and low-jitter equalization techniques become increasingly crucial for the wire-line receivers operating at data rates more than tens of gigabits per second. Th...Show More

Abstract:

Low-power and low-jitter equalization techniques become increasingly crucial for the wire-line receivers operating at data rates more than tens of gigabits per second. This brief reports an inductorless and power-efficient 32-Gb/s hybrid analog equalizer. The hybrid analog equalizer utilizes a triple-gate control to achieve equalization over a range of channel loss resulting in an inductorless and area-efficient design. The triple-gate controls entail that a low-frequency equalization is achieved in addition to the intermediate and high-frequency equalization, at minimum area overhead. The prototype is realized in a 65-nm CMOS, occupying a compact active area of 0.013 mm2. The maximum equalization achieved is 21 dB at Nyquist with a measured peak-to-peak data jitter of 5.25 ps (0.17 unit interval) at 32 Gb/s for a 231 - 1 pseudorandom bit sequence signal. The measurement shows a vertical eye-opening recovery rate of up to 61% at 32 Gb/s, for a channel loss of 21 dB. The prototype exhibits a competitive power efficiency of 0.53 mW/Gb/s under a supply voltage of 1.2 V.
Page(s): 599 - 603
Date of Publication: 23 November 2017

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.