Abstract:
In cellular networks, the three-node full-duplex transmission mode has the potential to increase spectral efficiency without requiring full-duplex capability of users. Co...Show MoreMetadata
Abstract:
In cellular networks, the three-node full-duplex transmission mode has the potential to increase spectral efficiency without requiring full-duplex capability of users. Consequently, three-node full-duplex in cellular networks must deal with self-interference and user-to-user interference, which can be managed by power control and user-frequency assignment techniques. This paper investigates the problem of maximizing the sum spectral efficiency by jointly determining the transmit powers in a distributed fashion, and assigning users to frequency channels. The problem is formulated as a mixed-integer nonlinear problem, which is shown to be non-deterministic polynomial-time hard. We investigate a close-to-optimal solution approach by dividing the joint problem into a power control problem and an assignment problem. The power control problem is solved by Fast-Lipschitz optimization, while a greedy solution with guaranteed performance is developed for the assignment problem. Numerical results indicate that compared with the half-duplex mode, both spectral and energy efficiencies of the system are increased by the proposed algorithm. Moreover, results show that the power control and assignment solutions have important, but opposite roles in scenarios with low or high self-interference cancellation. When the self-interference cancellation is high, user-frequency assignment is more important than power control, while power control is essential at low self-interference cancellation.
Published in: IEEE Transactions on Wireless Communications ( Volume: 16, Issue: 10, October 2017)