A majorization-minimization algorithm with projected gradient updates for time-domain spectrogram factorization | IEEE Conference Publication | IEEE Xplore

A majorization-minimization algorithm with projected gradient updates for time-domain spectrogram factorization


Abstract:

We previously introduced a framework called time-domain spectrogram factorization (TSF), which realizes nonnegative matrix factorization (NMF)-like source separation in t...Show More

Abstract:

We previously introduced a framework called time-domain spectrogram factorization (TSF), which realizes nonnegative matrix factorization (NMF)-like source separation in the time domain. This framework is particularly noteworthy in that, while maintaining the ability of NMF to obtain a parts-based representation of magnitude spectra, it allows us to (i) circumvent the commonly made assumption with the NMF approach that the magnitude spectra of source components are additive and (ii) take account of the interdependence of the phase/amplitude components at different time-frequency points. In particular, the second factor has been overlooked despite its potential importance. Our previous study revealed that the conventional TSF algorithm was relatively slow due to large matrix inversions, and the early stopping of the algorithm often resulted in poor separation accuracy. To overcome this problem, this paper presents an iterative TSF solver using projected gradient updates. Simulation results show that the proposed TSF approach yields higher source separation performance than NMF and the other variants including the original TSF.
Date of Conference: 05-09 March 2017
Date Added to IEEE Xplore: 19 June 2017
ISBN Information:
Electronic ISSN: 2379-190X
Conference Location: New Orleans, LA, USA

Contact IEEE to Subscribe

References

References is not available for this document.