Loading [MathJax]/extensions/MathEvents.js
A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network | IEEE Journals & Magazine | IEEE Xplore

A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network


Abstract:

We present an ultra-low-power Bluetooth low-energy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs a...Show More

Abstract:

We present an ultra-low-power Bluetooth low-energy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with a switched current-source digitally controlled oscillator (DCO) featuring low frequency pushing, and class-E/F2 digital power amplifier (PA), featuring high efficiency. Low 1/ f DCO noise allows the ADPLL to shut down after acquiring lock. The receiver operates in discrete time at high sampling rate (~10 Gsamples/s) with intermediate frequency placed beyond 1/ f noise corner of MOS devices. New multistage multirate charge-sharing bandpass filters are adapted to achieve high out-of-band linearity, low noise, and low power consumption. An integrated on-chip matching network serves to both PA and low-noise transconductance amplifier, thus allowing a 1-pin direct antenna connection with no external band-selection filters. The TRX consumes 2.75 mW on the RX side and 3.7 mW on the TX side when delivering 0 dBm in BLE.
Published in: IEEE Journal of Solid-State Circuits ( Volume: 52, Issue: 4, April 2017)
Page(s): 1144 - 1162
Date of Publication: 23 February 2017

ISSN Information:

Funding Agency:


References

References is not available for this document.