PointNet: A 3D Convolutional Neural Network for real-time object class recognition | IEEE Conference Publication | IEEE Xplore

PointNet: A 3D Convolutional Neural Network for real-time object class recognition


Abstract:

During the last few years, Convolutional Neural Networks are slowly but surely becoming the default method solve many computer vision related problems. This is mainly due...Show More

Abstract:

During the last few years, Convolutional Neural Networks are slowly but surely becoming the default method solve many computer vision related problems. This is mainly due to the continuous success that they have achieved when applied to certain tasks such as image, speech, or object recognition. Despite all the efforts, object class recognition methods based on deep learning techniques still have room for improvement. Most of the current approaches do not fully exploit 3D information, which has been proven to effectively improve the performance of other traditional object recognition methods. In this work, we propose PointNet, a new approach inspired by VoxNet and 3D ShapeNets, as an improvement over the existing methods by using density occupancy grids representations for the input data, and integrating them into a supervised Convolutional Neural Network architecture. An extensive experimentation was carried out, using ModelNet - a large-scale 3D CAD models dataset - to train and test the system, to prove that our approach is on par with state-of-the-art methods in terms of accuracy while being able to perform recognition under real-time constraints.
Date of Conference: 24-29 July 2016
Date Added to IEEE Xplore: 03 November 2016
ISBN Information:
Electronic ISSN: 2161-4407
Conference Location: Vancouver, BC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.