Abstract:
The ability to generate computationally compact ECG analysis algorithms is of interest in the field of wearable physiologic monitors. Such remote monitors necessarily hav...Show MoreMetadata
Abstract:
The ability to generate computationally compact ECG analysis algorithms is of interest in the field of wearable physiologic monitors. Such remote monitors necessarily have limited on-board energy storage and therefore lack the computational power and physical memory often required for academic study of physiologic waveforms. Herein we evaluate a set of algorithms with markedly different computation and memory footprints useful in extracting QRS complexes from synthetically generated noisy and measured ECG signals. A small memory and computational footprint Short Time Fourier Transform ECG analysis algorithm is demonstrated to have similar sensitivity and specificity to a more complex but highly accurate Stockwell Transform.
Published in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:
ISSN Information:
PubMed ID: 28269057