Loading [MathJax]/extensions/MathMenu.js
Ensemble statistical and subspace clustering model for analysis of autism spectrum disorder phenotypes | IEEE Conference Publication | IEEE Xplore

Ensemble statistical and subspace clustering model for analysis of autism spectrum disorder phenotypes


Abstract:

Heterogeneity in Autism Spectrum Disorder (ASD) is complex including variability in behavioral phenotype as well as clinical, physiologic, and pathologic parameters. The ...Show More

Abstract:

Heterogeneity in Autism Spectrum Disorder (ASD) is complex including variability in behavioral phenotype as well as clinical, physiologic, and pathologic parameters. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) now diagnoses ASD using a 2-dimensional model based social communication deficits and fixated interests and repetitive behaviors. Sorting out heterogeneity is crucial for study of etiology, diagnosis, treatment and prognosis. In this paper, we present an ensemble model for analyzing ASD phenotypes using several machine learning techniques and a k-dimensional subspace clustering algorithm. Our ensemble also incorporates statistical methods at several stages of analysis. We apply this model to a sample of 208 probands drawn from the Simon Simplex Collection Missouri Site patients. The results provide useful evidence that is helpful in elucidating the phenotype complexity within ASD. Our model can be extended to other disorders that exhibit a diverse range of heterogeneity.
Date of Conference: 16-20 August 2016
Date Added to IEEE Xplore: 18 October 2016
ISBN Information:

ISSN Information:

PubMed ID: 28269016
Conference Location: Orlando, FL, USA

Contact IEEE to Subscribe

References

References is not available for this document.