Loading [MathJax]/extensions/MathMenu.js
Personalized Recommendation Combining User Interest and Social Circle | IEEE Journals & Magazine | IEEE Xplore

Personalized Recommendation Combining User Interest and Social Circle


Abstract:

With the advent and popularity of social network, more and more users like to share their experiences, such as ratings, reviews, and blogs. The new factors of social netw...Show More

Abstract:

With the advent and popularity of social network, more and more users like to share their experiences, such as ratings, reviews, and blogs. The new factors of social network like interpersonal influence and interest based on circles of friends bring opportunities and challenges for recommender system (RS) to solve the cold start and sparsity problem of datasets. Some of the social factors have been used in RS, but have not been fully considered. In this paper, three social factors, personal interest, interpersonal interest similarity, and interpersonal influence, fuse into a unified personalized recommendation model based on probabilistic matrix factorization. The factor of personal interest can make the RS recommend items to meet users' individualities, especially for experienced users. Moreover, for cold start users, the interpersonal interest similarity and interpersonal influence can enhance the intrinsic link among features in the latent space. We conduct a series of experiments on three rating datasets: Yelp, MovieLens, and Douban Movie. Experimental results show the proposed approach outperforms the existing RS approaches.
Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 26, Issue: 7, July 2014)
Page(s): 1763 - 1777
Date of Publication: 25 October 2013

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.