Abstract:
Layerwise manufacturing technology exhibits a high potential in the field of rapid manufacturing, due to its capability to directly build up three-dimensional metallic co...Show MoreMetadata
Abstract:
Layerwise manufacturing technology exhibits a high potential in the field of rapid manufacturing, due to its capability to directly build up three-dimensional metallic components. In this research, we established a layerwise manufacturing platform having YLR 500 AC fiber laser and an enclosed chamber vacuumed and infused trace argon gas to minimize oxidation powdered material. From relationship of laser power and scanning speed can observe the variation of weld width. It assists to find the suitable laser parameters for laser additive manufacturing at blue region. The morphology of titanium specimen was analyzed by SEM image examined, and some porous structure formed due to the surface tension and oxide effect. The result of mechanical strength of 366.16 MPa was proved to be smaller than common bulk material. The X-ray diffraction patterns of titanium specimen has higher crystallization from R(110), R(101) and R(200). We have successfully fabrication a three-dimensional object and analysis its material properties.
Published in: The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems
Date of Conference: 07-10 April 2013
Date Added to IEEE Xplore: 18 July 2013
ISBN Information: