I. Introduction
The growth in demand for air traffic operations in the United States has made the system particularly susceptible to weather-related disruptions. In 2009, 44% of the total minutes of flight delays in the U.S. were due to weather [1]. Convective weather, in particular, is responsible for large delays and widespread disruptions in the National Airspace System (NAS), especially during summer months when travel demand is high. Efficiently operating the airspace system in the presence of weather requires the integration of weather forecast products into air traffic management decision-making. One strategy for managing aircraft during periods of decreased airspace capacity due to the presence of storms is to relax the rigid structure of airspace and reconfigure airspace more effectively given the specific demand and weather conditions.