Loading [MathJax]/extensions/MathZoom.js
Large Margin Classifier Based on Affine Hulls | IEEE Conference Publication | IEEE Xplore

Large Margin Classifier Based on Affine Hulls


Abstract:

This paper introduces a geometrically inspired large-margin classifier that can be a better alternative to the Support Vector Machines (SVMs) for the classification probl...Show More

Abstract:

This paper introduces a geometrically inspired large-margin classifier that can be a better alternative to the Support Vector Machines (SVMs) for the classification problems with limited number of training samples. In contrast to the SVM classifier, we approximate classes with affine hulls of their class samples rather than convex hulls, which may be unrealistically tight in high-dimensional spaces. To find the best separating hyperplane between any pair of classes approximated with the affine hulls, we first compute the closest points on the affine hulls and connect these two points with a line segment. The optimal separating hyperplane is chosen to be the hyperplane that is orthogonal to the line segment and bisects the line. To allow soft margin solutions, we first reduce affine hulls in order to alleviate the effects of outliers and then search for the best separating hyperplane between these reduced models. Multi-class classification problems are dealt with constructing and combining several binary classifiers as in SVM. The experiments on several databases show that the proposed method compares favorably with the SVM classifier.
Date of Conference: 23-26 August 2010
Date Added to IEEE Xplore: 07 October 2010
ISBN Information:

ISSN Information:

Conference Location: Istanbul, Turkey

Contact IEEE to Subscribe

References

References is not available for this document.