Abstract:
This paper studies the influence of road camber on the stability of single-track road vehicles. Road camber changes the magnitude and direction of the tire force and mome...Show MoreMetadata
Abstract:
This paper studies the influence of road camber on the stability of single-track road vehicles. Road camber changes the magnitude and direction of the tire force and moment vectors relative to the wheels, as well as the combined-force limit one might obtain from the road tires. Camber-induced changes in the tire force and moment systems have knock-on consequences for the vehicle's stability. In order to study camber-induced stability trends for a range of machine speeds and roll angles, we study the machine dynamics as the vehicle travels over the surface of a right circular cone. Conical road surfaces allow the machine to operate at a constant steady-state speed, a constant roll angle and a constant road camber angle. The results show that at low speed both the weave- and wobble-mode stability is at a maximum when the machine is perpendicular to the road surface. This trend is reversed at high speed, since the weave- and wobble-mode damping is minimized by running conditions in which the wheels are orthogonal to the road. As a result, positive camber, which is often introduced by road builders to aid drainage and enhance the friction limit of four-wheeled vehicle tires, might be detrimental to the stability of two-wheeled machines.
Date of Conference: 12-14 March 2008
Date Added to IEEE Xplore: 06 June 2008
ISBN Information: