Abstract:
This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, w...Show MoreMetadata
Abstract:
This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, which is based on a recursive least-squares finite-impulse-response lattice filter, has the distinguishing feature that variable and high-order adaptive filters can be realized in the real-time implementation. Varying the order of the adaptive controller produces both fast adaptation and optimal steady-state performance in the experiment, without the large transients often produced by fixed-order recursive least-squares adaptive controllers. The steady-state performance of the high-order adaptive controller approximates closely the theoretically achievable minimum-variance steady-state performance, which is derived from the identified plant and jitter dynamics. Experimental results also illustrate the capability of the adaptive controller to adapt rapidly to changing jitter characteristics.
Published in: IEEE Transactions on Control Systems Technology ( Volume: 16, Issue: 2, March 2008)