Loading [MathJax]/extensions/MathMenu.js
High accuracy classification of EEG signal | IEEE Conference Publication | IEEE Xplore

High accuracy classification of EEG signal


Abstract:

Improving classification accuracy is a key issue to advancing brain computer interface (BCI) research from laboratory to real world applications. This work presents a hig...Show More

Abstract:

Improving classification accuracy is a key issue to advancing brain computer interface (BCI) research from laboratory to real world applications. This work presents a high accuracy EEG signal classification method using single trial EEC signal to detect left and right finger movement. We apply an optimal temporal filter to remove irrelevant signal and subsequently extract key features from spatial patterns of EEG signal to perform classification. Specifically, the proposed method transforms the original EEG signal into a spatial pattern and applies the RBF feature selection method to generate robust feature. Classification is performed by the SVM and our experimental result shows that the classification accuracy of the proposed method reaches 90% as compared to the current reported best accuracy of 84%.
Date of Conference: 26-26 August 2004
Date Added to IEEE Xplore: 20 September 2004
Print ISBN:0-7695-2128-2
Print ISSN: 1051-4651
Conference Location: Cambridge, UK

Contact IEEE to Subscribe

References

References is not available for this document.