Loading [MathJax]/extensions/MathMenu.js
Deep Embedding Network for Clustering | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Tuesday, 8 April, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Deep Embedding Network for Clustering


Abstract:

Clustering is a fundamental technique widely used for exploring the inherent data structure in pattern recognition and machine learning. Most of the existing methods focu...Show More

Abstract:

Clustering is a fundamental technique widely used for exploring the inherent data structure in pattern recognition and machine learning. Most of the existing methods focus on modeling the similarity/dissimilarity relationship among instances, such as k-means and spectral clustering, and ignore to extract more effective representation for clustering. In this paper, we propose a deep embedding network for representation learning, which is more beneficial for clustering by considering two constraints on learned representations. We first utilize a deep auto encoder to learn the reduced representations from the raw data. To make the learned representations suitable for clustering, we first impose a locality-persevering constraint on the learned representations, which aims to embed original data into its underlying manifold space. Then, different from spectral clustering which extracts representations from the block diagonal similarity matrix, we apply a group sparsity constraint for the learned representations, and aim to learn block diagonal representations in which the nonzero groups correspond to its cluster. After obtaining the learned representations, we use k-means to cluster them. To evaluate the proposed deep embedding network, we compare its performance with k-means and spectral clustering on three commonly-used datasets. The experiments demonstrate that the proposed method achieves promising performance.
Date of Conference: 24-28 August 2014
Date Added to IEEE Xplore: 06 December 2014
Electronic ISBN:978-1-4799-5209-0
Print ISSN: 1051-4651
Conference Location: Stockholm, Sweden

Contact IEEE to Subscribe

References

References is not available for this document.