Abstract:
This paper is concerned with the game theoretical approach in designing the multiuser downlink beamformers in multicell systems. Sharing the same physical resource, the b...Show MoreMetadata
Abstract:
This paper is concerned with the game theoretical approach in designing the multiuser downlink beamformers in multicell systems. Sharing the same physical resource, the base-station of each cell wishes to minimize its transmit power subject to a set of target signal-to-interference-plus-noise ratios (SINRs) at the multiple users in the cell. In this context, at first, the paper considers a strategic noncooperative game (SNG) where each base-station greedily determines its optimal downlink beamformer strategy in a distributed manner, without any coordination between the cells. Via the game theory framework, it is shown that this game belongs to the framework of standard functions. The conditions guaranteeing the existence and uniqueness of a Nash Equilibrium (NE) in this competitive design are subsequently examined. The paper then makes a revisit to the fully coordinated design in multicell downlink beamforming, where the optimal beamformers are jointly designed between the base-stations. A comparison between the competitive and coordinated designs shows the benefits of applying the former over the latter in terms of each design's distributed implementation. Finally, in order to improve the efficiency of the NE in the competitive design, the paper considers a more cooperative game through a pricing mechanism. The pricing consideration enables a base-station to steer its beamformers in a more cooperative manner, which ultimately limits the interference induced to other cells. The study on the existence and uniqueness of the new game's NE is then given. The paper also presents a condition on the pricing factors that allow the new NE point to approach the performance established by the coordinated design, while retaining the distributed nature of the multicell game.
Published in: IEEE Transactions on Signal Processing ( Volume: 59, Issue: 7, July 2011)