IEEE Transactions on Knowledge and Data Engineering
- Vol: 24 Issue: 1
- Vol: 24 Issue: 2
- Vol: 24 Issue: 3
- Vol: 24 Issue: 4
- Vol: 24 Issue: 5
- Vol: 24 Issue: 6
- Vol: 24 Issue: 7
- Vol: 24 Issue: 8
- Vol: 24 Issue: 9
- Vol: 24 Issue: 10
- Vol: 24 Issue: 11
- Vol: 24 Issue: 12
- Vol: 23 Issue: 1
- Vol: 23 Issue: 2
- Vol: 23 Issue: 3
- Vol: 23 Issue: 4
- Vol: 23 Issue: 5
- Vol: 23 Issue: 6
- Vol: 23 Issue: 7
- Vol: 23 Issue: 8
- Vol: 23 Issue: 9
- Vol: 23 Issue: 10
- Vol: 23 Issue: 11
- Vol: 23 Issue: 12
- Vol: 22 Issue: 1
- Vol: 22 Issue: 2
- Vol: 22 Issue: 3
- Vol: 22 Issue: 4
- Vol: 22 Issue: 5
- Vol: 22 Issue: 6
- Vol: 22 Issue: 7
- Vol: 22 Issue: 8
- Vol: 22 Issue: 9
- Vol: 22 Issue: 10
- Vol: 22 Issue: 11
- Vol: 22 Issue: 12
- Vol: 21 Issue: 1
- Vol: 21 Issue: 2
- Vol: 21 Issue: 3
- Vol: 21 Issue: 4
- Vol: 21 Issue: 5
- Vol: 21 Issue: 6
- Vol: 21 Issue: 7
- Vol: 21 Issue: 8
- Vol: 21 Issue: 9
- Vol: 21 Issue: 10
- Vol: 21 Issue: 11
- Vol: 21 Issue: 12
- Vol: 10 Issue: 1
- Vol: 10 Issue: 2
- Vol: 10 Issue: 3
- Vol: 10 Issue: 4
- Vol: 10 Issue: 5
- Vol: 10 Issue: 6
- Vol: 20 Issue: 1
- Vol: 20 Issue: 2
- Vol: 20 Issue: 3
- Vol: 20 Issue: 4
- Vol: 20 Issue: 5
- Vol: 20 Issue: 6
- Vol: 20 Issue: 7
- Vol: 20 Issue: 8
- Vol: 20 Issue: 9
- Vol: 20 Issue: 10
- Vol: 20 Issue: 11
- Vol: 20 Issue: 12
- Vol: 19 Issue: 1
- Vol: 19 Issue: 2
- Vol: 19 Issue: 3
- Vol: 19 Issue: 4
- Vol: 19 Issue: 5
- Vol: 19 Issue: 6
- Vol: 19 Issue: 7
- Vol: 19 Issue: 8
- Vol: 19 Issue: 9
- Vol: 19 Issue: 10
- Vol: 19 Issue: 11
- Vol: 19 Issue: 12
- Vol: 18 Issue: 1
- Vol: 18 Issue: 2
- Vol: 18 Issue: 3
- Vol: 18 Issue: 4
- Vol: 18 Issue: 5
- Vol: 18 Issue: 6
- Vol: 18 Issue: 7
- Vol: 18 Issue: 8
- Vol: 18 Issue: 9
- Vol: 18 Issue: 10
- Vol: 18 Issue: 11
- Vol: 18 Issue: 12
- Vol: 7 Issue: 1
- Vol: 7 Issue: 2
- Vol: 7 Issue: 2
- Vol: 7 Issue: 3
- Vol: 7 Issue: 4
- Vol: 7 Issue: 5
- Vol: 7 Issue: 6
- Vol: 17 Issue: 1
- Vol: 17 Issue: 2
- Vol: 17 Issue: 3
- Vol: 17 Issue: 4
- Vol: 17 Issue: 5
- Vol: 17 Issue: 6
- Vol: 17 Issue: 7
- Vol: 17 Issue: 8
- Vol: 17 Issue: 9
- Vol: 17 Issue: 10
- Vol: 17 Issue: 11
- Vol: 17 Issue: 12
- Vol: 16 Issue: 1
- Vol: 16 Issue: 2
- Vol: 16 Issue: 3
- Vol: 16 Issue: 4
- Vol: 16 Issue: 5
- Vol: 16 Issue: 6
- Vol: 16 Issue: 7
- Vol: 16 Issue: 8
- Vol: 16 Issue: 9
- Vol: 16 Issue: 10
- Vol: 16 Issue: 11
- Vol: 16 Issue: 12
- Vol: 15 Issue: 1
- Vol: 15 Issue: 2
- Vol: 15 Issue: 3
- Vol: 15 Issue: 4
- Vol: 15 Issue: 5
- Vol: 15 Issue: 6
- Vol: 14 Issue: 1
- Vol: 14 Issue: 2
- Vol: 14 Issue: 3
- Vol: 14 Issue: 4
- Vol: 14 Issue: 5
- Vol: 14 Issue: 6
- Vol: 11 Issue: 1
- Vol: 11 Issue: 2
- Vol: 11 Issue: 3
- Vol: 11 Issue: 4
- Vol: 11 Issue: 5
- Vol: 11 Issue: 6
- Vol: 13 Issue: 1
- Vol: 13 Issue: 2
- Vol: 13 Issue: 3
- Vol: 13 Issue: 4
- Vol: 13 Issue: 5
- Vol: 13 Issue: 6
- Vol: 12 Issue: 1
- Vol: 12 Issue: 2
- Vol: 12 Issue: 3
- Vol: 12 Issue: 4
- Vol: 12 Issue: 5
- Vol: 12 Issue: 6
- Vol: 29 Issue: 1
- Vol: 29 Issue: 2
- Vol: 29 Issue: 3
- Vol: 29 Issue: 4
- Vol: 29 Issue: 5
- Vol: 29 Issue: 6
- Vol: 29 Issue: 7
- Vol: 29 Issue: 8
- Vol: 29 Issue: 9
- Vol: 29 Issue: 10
- Vol: 29 Issue: 11
- Vol: 29 Issue: 12
- Vol: 28 Issue: 1
- Vol: 28 Issue: 2
- Vol: 28 Issue: 3
- Vol: 28 Issue: 4
- Vol: 28 Issue: 5
- Vol: 28 Issue: 6
- Vol: 28 Issue: 7
- Vol: 28 Issue: 8
- Vol: 28 Issue: 9
- Vol: 28 Issue: 10
- Vol: 28 Issue: 11
- Vol: 28 Issue: 12
- Vol: 27 Issue: 1
- Vol: 27 Issue: 2
- Vol: 27 Issue: 3
- Vol: 27 Issue: 4
- Vol: 27 Issue: 5
- Vol: 27 Issue: 6
- Vol: 27 Issue: 7
- Vol: 27 Issue: 8
- Vol: 27 Issue: 9
- Vol: 27 Issue: 10
- Vol: 27 Issue: 11
- Vol: 27 Issue: 12
- Vol: 26 Issue: 1
- Vol: 26 Issue: 2
- Vol: 26 Issue: 3
- Vol: 26 Issue: 4
- Vol: 26 Issue: 5
- Vol: 26 Issue: 6
- Vol: 26 Issue: 7
- Vol: 26 Issue: 8
- Vol: 26 Issue: 9
- Vol: 26 Issue: 10
- Vol: 26 Issue: 11
- Vol: 26 Issue: 12
- Vol: 24 Issue: 1
- Vol: 24 Issue: 2
- Vol: 24 Issue: 3
- Vol: 24 Issue: 4
- Vol: 24 Issue: 5
- Vol: 24 Issue: 6
- Vol: 24 Issue: 7
- Vol: 24 Issue: 8
- Vol: 24 Issue: 9
- Vol: 24 Issue: 10
- Vol: 24 Issue: 11
- Vol: 24 Issue: 12
- Vol: 23 Issue: 1
- Vol: 23 Issue: 2
- Vol: 23 Issue: 3
- Vol: 23 Issue: 4
- Vol: 23 Issue: 5
- Vol: 23 Issue: 6
- Vol: 23 Issue: 7
- Vol: 23 Issue: 8
- Vol: 23 Issue: 9
- Vol: 23 Issue: 10
- Vol: 23 Issue: 11
- Vol: 23 Issue: 12
- Vol: 22 Issue: 1
- Vol: 22 Issue: 2
- Vol: 22 Issue: 3
- Vol: 22 Issue: 4
- Vol: 22 Issue: 5
- Vol: 22 Issue: 6
- Vol: 22 Issue: 7
- Vol: 22 Issue: 8
- Vol: 22 Issue: 9
- Vol: 22 Issue: 10
- Vol: 22 Issue: 11
- Vol: 22 Issue: 12
- Vol: 21 Issue: 1
- Vol: 21 Issue: 2
- Vol: 21 Issue: 3
- Vol: 21 Issue: 4
- Vol: 21 Issue: 5
- Vol: 21 Issue: 6
- Vol: 21 Issue: 7
- Vol: 21 Issue: 8
- Vol: 21 Issue: 9
- Vol: 21 Issue: 10
- Vol: 21 Issue: 11
- Vol: 21 Issue: 12
- Vol: 10 Issue: 1
- Vol: 10 Issue: 2
- Vol: 10 Issue: 3
- Vol: 10 Issue: 4
- Vol: 10 Issue: 5
- Vol: 10 Issue: 6
- Vol: 20 Issue: 1
- Vol: 20 Issue: 2
- Vol: 20 Issue: 3
- Vol: 20 Issue: 4
- Vol: 20 Issue: 5
- Vol: 20 Issue: 6
- Vol: 20 Issue: 7
- Vol: 20 Issue: 8
- Vol: 20 Issue: 9
- Vol: 20 Issue: 10
- Vol: 20 Issue: 11
- Vol: 20 Issue: 12
- Vol: 19 Issue: 1
- Vol: 19 Issue: 2
- Vol: 19 Issue: 3
- Vol: 19 Issue: 4
- Vol: 19 Issue: 5
- Vol: 19 Issue: 6
- Vol: 19 Issue: 7
- Vol: 19 Issue: 8
- Vol: 19 Issue: 9
- Vol: 19 Issue: 10
- Vol: 19 Issue: 11
- Vol: 19 Issue: 12
- Vol: 18 Issue: 1
- Vol: 18 Issue: 2
- Vol: 18 Issue: 3
- Vol: 18 Issue: 4
- Vol: 18 Issue: 5
- Vol: 18 Issue: 6
- Vol: 18 Issue: 7
- Vol: 18 Issue: 8
- Vol: 18 Issue: 9
- Vol: 18 Issue: 10
- Vol: 18 Issue: 11
- Vol: 18 Issue: 12
- Vol: 7 Issue: 1
- Vol: 7 Issue: 2
- Vol: 7 Issue: 2
- Vol: 7 Issue: 3
- Vol: 7 Issue: 4
- Vol: 7 Issue: 5
- Vol: 7 Issue: 6
- Vol: 17 Issue: 1
- Vol: 17 Issue: 2
- Vol: 17 Issue: 3
- Vol: 17 Issue: 4
- Vol: 17 Issue: 5
- Vol: 17 Issue: 6
- Vol: 17 Issue: 7
- Vol: 17 Issue: 8
- Vol: 17 Issue: 9
- Vol: 17 Issue: 10
- Vol: 17 Issue: 11
- Vol: 17 Issue: 12
- Vol: 16 Issue: 1
- Vol: 16 Issue: 2
- Vol: 16 Issue: 3
- Vol: 16 Issue: 4
- Vol: 16 Issue: 5
- Vol: 16 Issue: 6
- Vol: 16 Issue: 7
- Vol: 16 Issue: 8
- Vol: 16 Issue: 9
- Vol: 16 Issue: 10
- Vol: 16 Issue: 11
- Vol: 16 Issue: 12
- Vol: 15 Issue: 1
- Vol: 15 Issue: 2
- Vol: 15 Issue: 3
- Vol: 15 Issue: 4
- Vol: 15 Issue: 5
- Vol: 15 Issue: 6
- Vol: 14 Issue: 1
- Vol: 14 Issue: 2
- Vol: 14 Issue: 3
- Vol: 14 Issue: 4
- Vol: 14 Issue: 5
- Vol: 14 Issue: 6
- Vol: 11 Issue: 1
- Vol: 11 Issue: 2
- Vol: 11 Issue: 3
- Vol: 11 Issue: 4
- Vol: 11 Issue: 5
- Vol: 11 Issue: 6
- Vol: 13 Issue: 1
- Vol: 13 Issue: 2
- Vol: 13 Issue: 3
- Vol: 13 Issue: 4
- Vol: 13 Issue: 5
- Vol: 13 Issue: 6
- Vol: 12 Issue: 1
- Vol: 12 Issue: 2
- Vol: 12 Issue: 3
- Vol: 12 Issue: 4
- Vol: 12 Issue: 5
- Vol: 12 Issue: 6
- Vol: 29 Issue: 1
- Vol: 29 Issue: 2
- Vol: 29 Issue: 3
- Vol: 29 Issue: 4
- Vol: 29 Issue: 5
- Vol: 29 Issue: 6
- Vol: 29 Issue: 7
- Vol: 29 Issue: 8
- Vol: 29 Issue: 9
- Vol: 29 Issue: 10
- Vol: 29 Issue: 11
- Vol: 29 Issue: 12
- Vol: 28 Issue: 1
- Vol: 28 Issue: 2
- Vol: 28 Issue: 3
- Vol: 28 Issue: 4
- Vol: 28 Issue: 5
- Vol: 28 Issue: 6
- Vol: 28 Issue: 7
- Vol: 28 Issue: 8
- Vol: 28 Issue: 9
- Vol: 28 Issue: 10
- Vol: 28 Issue: 11
- Vol: 28 Issue: 12
- Vol: 27 Issue: 1
- Vol: 27 Issue: 2
- Vol: 27 Issue: 3
- Vol: 27 Issue: 4
- Vol: 27 Issue: 5
- Vol: 27 Issue: 6
- Vol: 27 Issue: 7
- Vol: 27 Issue: 8
- Vol: 27 Issue: 9
- Vol: 27 Issue: 10
- Vol: 27 Issue: 11
- Vol: 27 Issue: 12
- Vol: 26 Issue: 1
- Vol: 26 Issue: 2
- Vol: 26 Issue: 3
- Vol: 26 Issue: 4
- Vol: 26 Issue: 5
- Vol: 26 Issue: 6
- Vol: 26 Issue: 7
- Vol: 26 Issue: 8
- Vol: 26 Issue: 9
- Vol: 26 Issue: 10
- Vol: 26 Issue: 11
- Vol: 26 Issue: 12
Volume 21 Issue 10 • Oct. 2009
Sponsor
Filter Results
-
-
-
A Novel Bayes Model: Hidden Naive Bayes
Publication Year: 2009, Page(s):1361 - 1371
Cited by: Papers (77)Because learning an optimal Bayesian network classifier is an NP-hard problem, learning-improved naive Bayes has attracted much attention from researchers. In this paper, we summarize the existing improved algorithms and propose a novel Bayes model: hidden naive Bayes (HNB). In HNB, a hidden parent is created for each attribute which combines the influences from all other attributes. We experiment... View full abstract»
-
Approximate Distributed K-Means Clustering over a Peer-to-Peer Network
Publication Year: 2009, Page(s):1372 - 1388
Cited by: Papers (60)Data intensive peer-to-peer (P2P) networks are finding increasing number of applications. Data mining in such P2P environments is a natural extension. However, common monolithic data mining architectures do not fit well in such environments since they typically require centralizing the distributed data which is usually not practical in a large P2P network. Distributed data mining algorithms that a... View full abstract»
-
Automating the Design and Construction of Query Forms
Publication Year: 2009, Page(s):1389 - 1402
Cited by: Papers (2)One of the simplest ways to query a database is through a form where a user can fill in relevant information and obtain desired results by submitting the form. Designing good forms is a nontrivial manual task, and the designer needs a sound understanding of both the data organization and the querying needs. Furthermore, form design usually has conflicting goals: each form should be simple and easy... View full abstract»
-
Distributed View Divergence Control of Data Freshness in Replicated Database Systems
Publication Year: 2009, Page(s):1403 - 1417
Cited by: Papers (1)In this paper, we propose a distributed method to control the view divergence of data freshness for clients in replicated database systems whose facilitating or administrative roles are equal. Our method provides data with statistically defined freshness to clients when updates are initially accepted by any of the replicas, and then, asynchronously propagated among the replicas that are connected ... View full abstract»
-
estMax: Tracing Maximal Frequent Item Sets Instantly over Online Transactional Data Streams
Publication Year: 2009, Page(s):1418 - 1431
Cited by: Papers (9)Frequent item set mining is one of the most challenging issues for descriptive data mining. In general, its resulting set tends to produce a large number of frequent item sets. To represent them in a more compact notation, closed or maximal frequent item sets are often used but finding such item sets over online transactional data streams is not easy due to the requirements of a data stream. For t... View full abstract»
-
Reducing Redundancy in Subspace Clustering
Publication Year: 2009, Page(s):1432 - 1446
Cited by: Papers (3)In this paper, we first study an important but unsolved dilemma in the literature of subspace clustering, which is referred to as ldquoinformation overlapping-data coveragerdquo challenge. Current solutions of subspace clustering usually invoke a grid-based apriori-like procedure to identify dense regions and construct subspace clusters afterward. Due to the nature of monotonicity property in apri... View full abstract»
-
General Cost Models for Evaluating Dimensionality Reduction in High-Dimensional Spaces
Publication Year: 2009, Page(s):1447 - 1460
Cited by: Papers (4)Similarity search usually encounters a serious problem in the high-dimensional space, known as the "curse of dimensionality". In order to speed up the retrieval efficiency, most previous approaches reduce the dimensionality of the entire data set to a fixed lower value before building indexes (referred to as global dimensionality reduction (GDR)). More recent works focus on locally reducing the di... View full abstract»
-
Granular Computing and Knowledge Reduction in Formal Contexts
Publication Year: 2009, Page(s):1461 - 1474
Cited by: Papers (112)Granular computing and knowledge reduction are two basic issues in knowledge representation and data mining. Granular structure of concept lattices with application in knowledge reduction in formal concept analysis is examined in this paper. Information granules and their properties in a formal context are first discussed. Concepts of a granular consistent set and a granular reduct in the formal c... View full abstract»
-
Large Margin Feature Weighting Method via Linear Programming
Publication Year: 2009, Page(s):1475 - 1488
Cited by: Papers (33)The problem of feature selection is a difficult combinatorial task in machine learning and of high practical relevance. In this paper, we consider feature selection method for multimodally distributed data, and present a large margin feature weighting method for k-nearest neighbor (kNN) classifiers. The method learns the feature weighting factors by minimizing a cost function, which aims at separa... View full abstract»
-
Learning Heuristics for the Superblock Instruction Scheduling Problem
Publication Year: 2009, Page(s):1489 - 1502
Cited by: Papers (6)Modern processors have multiple pipelined functional units and can issue more than one instruction per clock cycle. This places a burden on the compiler to schedule the instructions to take maximum advantage of the underlying hardware. Superblocks - a straight-line sequence of code with a single entry point and multiple possible exit points - are a commonly used scheduling region within compilers.... View full abstract»
-
-
-
-
Aims & Scope
IEEE Transactions on Knowledge and Data Engineering (TKDE) informs researchers, developers, managers, strategic planners, users, and others interested in state-of-the-art and state-of-the-practice activities in the knowledge and data engineering area.
Meet Our Editors
Editor-in-Chief
Xuemin Lin
University of New South Wales
Associate Editor-in-Chief
Lei Chen
Hong Kong University of Science and Technology