Scheduled System Maintenance
On Tuesday, September 25, IEEE Xplore will undergo scheduled maintenance from 1:00–5:00 pm ET.
During this time, there may be intermittent impact on performance. We apologize for any inconvenience.
Cover Image

Computational Advertising:Techniques for Targeting Relevant Ads

The purchase and pricing options for this item are unavailable. Select items are only available as part of a subscription package. You may try again later or contact us for more information.
1 Author(s)

Computational Advertising (CA), popularly known as online advertising or Web advertising, refers to finding the most relevant ads matching a particular context on the Web. The context depends on the type of advertising and could mean the content where the ad is shown, the user who is viewing the ad, or the social network of the user. CA is a scientific sub-discipline at the intersection of information retrieval, statistical modeling, machine learning, optimization, large scale search, and text analysis. The core problem addressed in CA is of match-making between the ads and the context. Research in CA has evolved considerably over the last decade and a half and currently continues both in traditional areas such as vocabulary mismatch, query rewriting, and click prediction, and recently identified areas like user targeting, mobile advertising, and social advertising. Computational Advertising: Techniques for Targeting Relevant Ads focuses predominantly on the problems and solutions pro osed in traditional areas while also looking briefly at the emerging areas in the latter half of the monograph. To facilitate future research, a discussion of available resources, a list of public benchmark datasets and a discussion on future research directions are provided in the concluding sections.