Cover Image

Tactile Guidance for Policy Adaptation

The purchase and pricing options for this item are unavailable. Select items are only available as part of a subscription package. You may try again later or contact us for more information.
3 Author(s)

The development of behaviors for robot motion control is fundamental for robot operation in physical environments, yet is challenged by many factors such as sensor noise and approximate actuation models. Techniques like demonstration learning, that seed a training dataset with examples of behaviour execution by a task expert, are both powerful and practical for the development of motion control behaviors. To further endow a robot with the ability to continue learning from experience after demonstration can assist in robustness to poor demonstrators or demonstration interfaces, and also enable behavior adaptation to changes in the environment or task requirements. Tactile Guidance for Policy Adaptation introduces an approach for continuing motion control learning after demonstration that capitalizes on the availability of multiple sensor modalities through which a human teacher may transfer domain knowledge. Of particular note is that motion control corrections are provided through tac ile sensors located on the body of the robot. The approach is validated on a high degree-of-freedom robot system, for which both demonstration and correction are challenging. Tactile Guidance for Policy Adaptation should be of interest to those considering the use of demonstration and machine learning for the development of robot behaviors, in particular for high degree-of-freedom humanoids, as well as to those interested in the transfer of task knowledge through multiple sensor modalities.