Scheduled Maintenance on May 24th, 2018:
IEEE Xplore will undergo system maintenance from 1:30 PM - 3:00 PM ET. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
Cover Image

Operating Regimes of Large Wireless Networks

The purchase and pricing options for this item are unavailable. Select items are only available as part of a subscription package. You may try again later or contact us for more information.
2 Author(s)

The current communication architectures of wireless mesh and ad hoc networks are fundamentally limited by interference between simultaneous transmissions. This interference limitation leads to poor performance in large networks, where there are typically many source-destination pairs that want to communicate simultaneously: as the number of users in the network increases, the communication rate for each pair rapidly decreases. Given the increasing need to connect a massive number of wireless devices and to support various resource-intensive applications today, this poses a big challenge in the proliferation of such networks. Can we design new architectures that significantly increase the capacity of large wireless networks? Operating Regimes of Large Wireless Networks answers this question based on a scaling law characterization of the information-theoretic capacity of wireless networks. It shows that the information-theoretic capacity of wireless networks is much larger than the capa ity of current architectures. In particular, the interference barrier limiting current performances can be surpassed with a combination of physical layer and architectural ideas and such new architectures can provide dramatic performance gains in large networks. Operating Regimes of Large Wireless Networks identifies the fundamental operating regimes and system parameters in wireless networks, clarifies the impacts of main limiting factors, such as interference, power and space, and suggests architectural guidelines for the design of optimal architectures. It aims to provide a basis for engineers in the field of wireless communications and networking to explore new directions and methods for designing the future of wireless networks.