By Topic

Total variability modelling for face verification

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wallace, R. ; Idiap Res. Inst., Martigny, Switzerland ; McLaren, M.

This study presents the first detailed study of total variability modelling (TVM) for face verification. TVM was originally proposed for speaker verification, where it has been accepted as state-of-the-art technology. Also referred to as front-end factor analysis, TVM uses a probabilistic model to represent a speech recording as a low-dimensional vector known as an `i-vector'. This representation has been successfully applied to a wide variety of speech-related pattern recognition applications, and remains a hot topic in biometrics. In this work, the authors extend the application of i-vectors beyond the domain of speech to a novel representation of facial images for the purpose of face verification. Extensive experimentation on several challenging and publicly available face recognition databases demonstrates that TVM generalises well to this modality, providing between 17 and 39% relative reduction in verification error rate compared to a baseline Gaussian mixture model system. Several i-vector session compensation and scoring techniques were evaluated including source-normalised linear discriminant analysis (SN-LDA), probabilistic LDA and within-class covariance normalisation. Finally, this study provides a detailed comparison of the complexity of TVM, highlighting some important computational advantages with respect to related state-of-the-art techniques.

Published in:

Biometrics, IET  (Volume:1 ,  Issue: 4 )