By Topic

Radioactivity of \hbox {Nb}_{3}\hbox {Sn/Cu} Wires After Proton Irradiation

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Superconducting magnets based on Nb3Sn technology are being developed for the LHC high luminosity upgrade. In this context, irradiation induced changes of the superconducting properties of state-of-the-art Ti and Ta doped Nb3 Sn wires are presently studied. During irradiation tests with protons of 65 MeV at the cyclotron of Université Catholique de Louvain (UCL), 1.4 GeV at the CERN ISOLDE facility, and 24 GeV at the CERN IRRAD1 facility, the superconductor samples become radioactive and their handling must follow the legal specifications for radioactive materials. We have estimated the activation and the resulting ambient dose equivalent rate up to a fluence of 1017 p/cm2 with the Monte-Carlo Code FLUKA. The estimates were verified with experimental activation spectra. Samples for magnetization measurements with a mass of approximately 20 mg have to be considered as radioactive, but they do not have the potential to harm the operators handling them at radiation levels below 1 μSv/h. Larger samples (longer wires and sample holder materials like Cu and TiAl6V4) show correspondingly higher ambient dose equivalent rates and activation levels and they must be handled by radiation workers in designated areas, taking into account the standard precautions for work with radioactive materials. The use of radiation shielding during handling is recommended.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )