By Topic

Analysis and Optimization of Transformer-Based Power Combining for Back-Off Efficiency Enhancement

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaymaksut, E. ; Microelectronics and Sensors division (MICAS), Dept. of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium ; Francois, B. ; Reynaert, P.

This paper analyzes the back-off efficiency enhancement characteristics of transformer combined power amplifiers taking into account the amplifier and transformer parasitics. The dynamic power combining properties of different transformer architectures are investigated. The co-optimization of the transformer and the amplifiers is presented for the transformer-based Doherty power amplifier which is a linear class of operation with back-off efficiency enhancement. Then this analysis is extended for the uneven Doherty power amplifier which employs asymmetrical transformers. The proposed design methodology is used to design a 2.4 GHz uneven Doherty power amplifier in standard 90 nm CMOS technology. The fabricated two stage Doherty amplifier achieves 26.2 dBm peak output power at 2 V supply. The measured peak drain efficiency of the PA is 37% while the efficiency at 6 dB back-off is still as high as 30.1%.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 4 )