By Topic

Default Bayesian Estimation of the Fundamental Frequency

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nielsen, J.K. ; Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark ; Christensen, M.G. ; Jensen, S.H.

Joint fundamental frequency and model order estimation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real- and complex-valued discrete-time signals which may have missing samples or may have been sampled at a non-uniform sampling frequency. The observation model and prior distributions corresponding to the prior information are derived in a consistent fashion using maximum entropy and invariance arguments. Moreover, several approximations of the posterior distributions on the fundamental frequency and the model order are derived, and one of the state-of-the-art joint fundamental frequency and model order estimators is demonstrated to be a special case of one of these approximations. The performance of the approximations are evaluated in a small-scale simulation study on both synthetic and real world signals. The simulations indicate that the proposed algorithm yields more accurate results than previous algorithms. The simulation code is available online.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )