By Topic

Coordinated Iterative Learning Control Schemes for Train Trajectory Tracking With Overspeed Protection

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heqing Sun ; Adv. Control Syst. Lab., Beijing Jiaotong Univ., Beijing, China ; Zhongsheng Hou ; Dayou Li

This work embodies the overspeed protection and safe headway control into an iterative learning control (ILC) based train trajectory tracking algorithm to satisfy the high safety requirement of high-speed railways. First, a D-type ILC scheme with overspeed protection is proposed. Then, a corresponding coordinated ILC scheme with multiple trains is studied to keep the safe headway. Finally, the control scheme under traction/braking force constraint is also considered for this proposed ILC-based train trajectory tracking strategy. Rigorous theoretical analysis has shown that the proposed control schemes can guarantee the asymptotic convergence of train speed and position to its desired profiles without requirement of the physical model aside from some mild assumptions on the system. Effectiveness is further evaluated through simulations.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 2 )