By Topic

Directing Physiology and Mood through Music: Validation of an Affective Music Player

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van der Zwaag, M.D. ; Brain, Body, & Behavior Dept., Philips Res., Eindhoven, Netherlands ; Janssen, J.H. ; Westerink, J.H.D.M.

Music is important in everyday life, as it provides entertainment and influences our moods. As music is widely available, it is becoming increasingly difficult to select songs to suit our mood. An affective music player can remove this obstacle by taking a desired mood as input and then selecting songs that direct toward that desired mood. In the present study, we validate the concept of an affective music player directing the energy dimension of mood. User models were trained for 10 participants based on skin conductance changes to songs from their own music database. Based on the resulting user models, the songs that most increased or decreased the skin conductance level of the participants were selected to induce either a relatively energized or a calm mood. Experiments were conducted in a real-world office setting. The results showed that a reliable prediction can be made of the impact of a song on skin conductance, that skin conductance and mood can be directed toward an energized or calm state and that skin conductance remains in these states for at least 30 minutes. All in all, this study shows that the concept and models of the affective music player worked in an ecologically valid setting, suggesting the feasibility of using physiological responses in real-life affective computing applications.

Published in:

Affective Computing, IEEE Transactions on  (Volume:4 ,  Issue: 1 )