By Topic

Steady-State Oscillations in Resonant Electrostatic Vibration Energy Harvesters

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blokhina, E. ; School of Electrical, Electronic and Communications Engineering, University College Dublin, Belfield, Dublin, Ireland ; Galayko, D. ; Basset, P. ; Feely, O.

In this paper, we present a formal analysis and description of the steady-state behavior of an electrostatic vibration energy harvester operating in constant-charge mode and using different types of electromechanical transducers. The method predicts parameter values required to start oscillations, allows a study of the dynamics of the transient process, and provides a rigorous description of the system, necessary for further investigation of the related nonlinear phenomena and for the optimisation of converted power. We show how the system can be presented as a nonlinear oscillator and be analysed by the multiple scales method, a type of perturbation technique. We analyse two the most common cases of the transducer geometry and find the amplitude and the phase of steady-state oscillations as functions of parameters. The analytical predictions are shown to be in good agreement with the results obtained by behavioral modeling.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 4 )