By Topic

Simultaneous Grasp and Motion Planning: Humanoid Robot ARMAR-III

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nikolaus Vahrenkamp ; Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany ; Tamim Asfour ; Rudiger Dillmann

In this work, we present an integrated approach for planning collision-free grasping motions. Therefore, rapidly exploring random tree (RRT)-based algorithms are used to build a tree of reachable and collision-free configurations. During tree generation, both grasp hypotheses and approach movements toward them are computed. The quality of reachable grasping poses is evaluated using grasp wrench space (GWS) analysis. We present an extension to a dual-arm planner that generates bimanual grasps together with collision-free dual-arm grasping motions. The algorithms are evaluated with different setups in simulation and on the humanoid robot ARMAR-III (Figure 1).

Published in:

IEEE Robotics & Automation Magazine  (Volume:19 ,  Issue: 2 )