By Topic

Optimal transmission scheme for a distributed antenna in CDMA system

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tong, F. ; Dept. of Electron. & Electr. Eng., Univ. of Bath, UK ; Glover, I.A. ; Pennock, S.R. ; Shepherd, P.R.

Distributed antenna diversity employs separately installed, but cooperating, antennas within a single base-station; it has been proved that the uplink capacity (per cell) in terms of maximum achievable SIR (signal-to-interference ratio) is linear with the number of deployed antenna units. While in the downlink, because of the multiple-to-one propagation topology, equal power (transmission power at each antenna) allocation (providing equal SIR) in the base-station results in fixed SIR at the mobile terminal, irrespective of the number of base-station antennas used. A transmission scheme, using optimal power allocation and SIR-balanced power control, is proposed to increase the SIR by exploiting multiple base-station antennas. The downlink diversity (called antenna-multipath diversity) transfers the antenna diversity to multipath diversity by utilizing the spread-spectrum signal property. If optimal, rather than equal, power allocation is employed with antenna-multipath diversity, the SDMA advantage can be exploited. The optimisation result shows that, for a particular user, transmitting a signal from one antenna, instead of all base-station antennas, gives better SIR performance. The SIR CDF has been examined by simulation to verify this scheme. Compared to sending from all antennas, the result shows, that for 8 users, this scheme yields improved SIR by 3 dB with 5 antennas. The SIR advantage increases with increasing numbers of antennas and decreases, however, with increasing numbers of users in the cell.

Published in:

3G Mobile Communication Technologies, 2004. 3G 2004. Fifth IEE International Conference on

Date of Conference:

2004