By Topic

Fast and robust bore detection in range image data for industrial automation

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Biegelbauer, G. ; Autom. & Control Inst., Vienna Univ. of Technol., Austria ; Vincze, M.

This work presents a fast and robust method to precisely segment and locate bore holes of 4 to 50mm diameter. The task is solved by a robot moving a compact triangulation scanning sensor to all sides of the object and scanning the bore holes. Exploiting the knowledge about the expected bore diameter and bore pose makes it possible to develop highly robust algorithms for an industrial application. Sparse data of the bore hole is sufficient to segment the bore independent of bore hole chamfer type using a robust normal vector fit and a classification based on the Gaussian image. A sequential algorithm to fit the bore cylinder makes it possible to calculate the bore pose in less than 1 second. Experiments demonstrate that 120 degrees of the bore hole surface are sufficient for robust localization within 0.3mm and 0.5 degrees even in the presence of ghost points and notches in the bore holes.

Published in:

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on

Date of Conference:

6-9 Sept. 2004