Bayesian Image Super-resolution, Continued

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper develops a multi-frame image super-resolution approach from a Bayesian view-point by marginalizing over the unknown registration parameters relating the set of input low-resolution views. In Tipping and Bishop's Bayesian image super-resolution approach [16], the marginalization was over the superresolution image, necessitating the use of an unfavorable image prior. By integrating over the registration parameters rather than the high-resolution image, our method allows for more realistic prior distributions, and also reduces the dimension of the integral considerably, removing the main computational bottleneck of the other algorithm. In addition to the motion model used by Tipping and Bishop, illumination components are introduced into the generative model, allowing us to handle changes in lighting as well as motion. We show results on real and synthetic datasets to illustrate the efficacy of this approach.