Parameter Expanded Variational Bayesian Methods

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Bayesian inference has become increasingly important in statistical machine learning. Exact Bayesian calculations are often not feasible in practice, however. A number of approximate Bayesian methods have been proposed to make such calculations practical, among them the variational Bayesian (VB) approach. The VB approach, while useful, can nevertheless suffer from slow convergence to the approximate solution. To address this problem, we propose Parameter-eXpanded Variational Bayesian (PX-VB) methods to speed up VB. The new algorithm is inspired by parameter-expanded expectation maximization (PX-EM) and parameterexpanded data augmentation (PX-DA). Similar to PX-EM and -DA, PX-VB expands a model with auxiliary variables to reduce the coupling between variables in the original model. We analyze the convergence rates of VB and PX-VB and demonstrate the superior convergence rates of PX-VB in variational probit regression and automatic relevance determination.